Arke.Sitecore.MetaTags Module

Arke Systems, www.arkesystems.com

Version History

Version Notes By
1.0 Initial release Andy Uzick
1.1 Added support for property tags. Added “custom tags” and removed

“dynamic tags”. Added pipeline processors to support all tag types.
Improved debug logging. Expanded the documentation.

Background

Recently, a client was concerned about the S.E.O. ramifications of having identical pages at more than
one URL on their Sitecore site (for example, with and without "/en" in the path). Having pages like this
(or worse, internal links formed differently) can decrease search ranking. If the same page is at two
URLs, and there are links to both, the "link juice" is diluted across those pages.

Ill

The best solution for this is to emit a “canonical” meta tag with a common URL. Unfortunately, the client
did not have a common base layout, so the only way to do this site-wide was via a pipeline processor.

This kind of thing has come up often enough that | was motivated to create a MetaTag management
module. Different chunks of code need to create meta tags, and it’s not always convenient or even
possible to limit the timing of meta tag generation to the layout.

At some point, almost every solution needs a way to manage and emit meta tags. Sometimes we need
code to manage meta tags, sometimes content managers, sometimes it would be best done with
configuration. As often as not, diverse parts of the solution use different techniques for injecting meta
tag into the page, which leads to redundant code and/or hardcoded tags lost in a sea of markup.

Overview

Conceptually, there are two parts to managing tags in this module. Tags must be defined, and added to
pages. In most cases, the act of defining the tag (either in the Content Editor or in config) also adds it to
pages. However, it is also possible to define optional tags, which content authors can selectively add to

their pages, and to create pipeline processors, which emit zero or more tags based on any custom logic.

Most tags can be defined entirely in configuration, without coding. This includes both static tags, an also
method tags and property tags, which derive their values at runtime by leveraging existing methods and
properties.

Static, Custom, Method and Property tags can be defined and used both in the Content Editor and in the
pipeline config.

Coders can define custom tags. These tags also derive their values at runtime, but require more logic
than simply leveraging an existing method or property. These custom tags can be leveraged globally in
either the Content Editor or in config, or selectively in specific pages.

Coders can also create pipeline processors, which can generate tags at runtime. These processors can
selectively add zero or more tags depending on context, using your custom logic.

Tags can be added four ways:

1. By adding processors to the InjectMetaTags pipeline.

2. Inthe content editor, by adding tag definitions to a GlobalTags folder (these tags appear site-
wide).

3. Inthe content editor, by selecting pre-defined tags in a field that can be added to any template
(these tags appear on individual pages)

4. In code, at any point in the page lifecycle. This allows code in layouts, sublayouts and renderings
to add meta tags “ad hoc”.

On the web, there are two known subspecies of meta tag markup, those that use a “property” attribute
and those that use “name”. Both are still effectively name/value pairs. The “name” style tag seems to be
more common, but notable sets of commonly-used tags (like OpenGraph tags) use the “property”
structure. This module allows both styles.

Architecture

The module uses a collection of tag description objects (not markup) that persist through the page
lifecycle. Tags are added to this collection in various ways, and are flushed to the head section of the
page after pre-render. To flush the tags to the page, each is formed into a custom MetaTag control.

No modifications to the solution’s code or markup are required; all of the artifacts and event hooks are
created using pipeline processors added to the httpRequestBegin and insertRenderings
pipelines.

A template is provided, which can be added to the base templates of any site template. This gives the
content author an opportunity to include pre-defined tags in any given page. These pre-defined tags are
managed in the Modules section of the content tree to create tags that are either optional, or included
globally in the site.

The process for gathering, forming and injecting tags is itself managed with a custom pipeline.
Developers can add tags by inserting processors into this pipeline. They can also change the behavior of
the process by replacing existing processors.

Defining Tags

There are several types of tags that can be defined:

1. Static tags: Tags where both the name and value are static, such a “robots noindex”.
2. Custom tags: Tags where either the name, value or both are generated by custom logic.

3. Method tags: Tags where the name is static, and the value is derived from an existing static
method.

4. Property tags: Tags where the name is static, and the value is derived from an existing static
property.

Static tags, Method tags and Property tags can all be defined entirely in configuration ... no coding is
required. Custom tags are defined in code, and then used in the solution through configuration.

Note that pipeline processors can add tags, using custom logic, using any of these pre-defined tag types.

Tags can be defined either in the Content Editor, or the InjectMetaTags pipeline.

Defining tags in the Content Editor
Tags are defined in the Content Editor by creating Tag Items in the MetaTags Module section.

= J Modules
= _‘] MetaTags

= {JOpﬁonal‘l’ags
@ Robots NoFollow
@ Robots Nolndex

= J GlobalTags
B, DeviceName
@ Image Toolbar
& InstanceName
@ ItemID
@ Machine Name
@ Robots NOODP

() settings

There are two places where tags are defined in the Content Editor

e Items created in the GlobalTags folder define tags that will be inserted on every page of the site.
e |tems created in the OptionalTags folder are available for content authors to include selectively
on individual pages.

There are four templates for creating new tag definitions: StaticMetaTag, PropertyMetaTag,
MethodMetaTag and CustomMetaTag.

Defining a StaticMetaTag in the Content Editor

Static tags are simply name/value pairs for common tags. These tags are created by adding a content
item using the StaticMetaTag template. For example, there is a pre-defined tag for “Robots
Nolndex”:

Robots Nolndex

0 Quick Info
=] MetaTag

Key:
robots

Value:
noindex

Type:
Name

o Key: The value for the “name” or “property” attribute (depending on the “Type” setting).

e Value: The value of the “content” attribute.

e Type: Select “Name” for a meta tag that expresses the key as a “name” attribute, or “Property:
for a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:
<meta name="'robots' content="'noindex" />

To define a Static tag in the pipeline, see Defining a StaticMetaTag in the InjectMetaTags pipeline.

Defining a PropertyMetaTag in the Content Editor

Property tags have static names, but their value is derived at runtime from the value of any static
property, without coding. This might be a property in your solution, or a property in the Sitecore
namespace. These tags are created by adding a content item using the PropertyMetaTag template.
For example, there is a pre-defined tag for “lnstanceName”:

% InstanceName

0 Quick Info ‘
=] MetaTag ‘
TypeSignature: J
Sitecore.Configuration.Settings, Sitecore.Kernel |

PropertyName: |
InstanceName [

Key:
InstanceName

Type
Name l

o TypeSignature: The class name and assembly where the property is located.

e PropertyName: The property in that class that returns a string value to be used in the tag.

o Key: The value for the “name” or “property” attribute (depending on the “Type” setting).

e Type: Select “Name” for a meta tag that expresses the key as a “name” attribute, or “Property:
for a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:

<meta name="'InstanceName' content="MYMACHINE-MYSITE"/>

To define a Property tag in the pipeline, see Defining a PropertyMetaTagq in the InjectMetaTags pipeline.

Defining a MethodMetaTag in the Content Editor

Method tags have static names, but their value is derived at runtime from the value of any static
method, without coding. This might be a method in your solution, or a method in the Sitecore
namespace. These tags are created by adding a content item using the MethodMetaTag template. For
example, there is a pre-defined tag for “DeviceName”:

DeviceName
L3

o Quick Info
:] MetaTag

TypeSignature:
Sitecore.Context, Sitecore.Kernel

MethodName:
GetDeviceName

Key:
DeviceName

Type:
Name

e TypeSignature: The class name and assembly where the property is located.

e PropertyName: The property in that class that returns a string value to be used in the tag.

o Key: The value for the “name” or “property” attribute (depending on the “Type” setting).

e Type: Select “Name” for a meta tag that expresses the key as a “name” attribute, or “Property:
for a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:
e <meta name="'DeviceName" content="Default'/>

To define a Method tag in the pipeline, see Defining a MethodMetaTag in the InjectMetaTags pipeline.

Defining a CustomMetaTag in the Content Editor
In a Custom tag, both the name and value are defined in custom code. This custom code is implemented

by creating a class that inherits from Arke . SharedSource .MetaTags . Tags.BaseTag. For
more information, see Coding Custom meta tags.

Custom tags are used in content editor by creating an item using the CustomMetaTag template:

‘@ IltemID

o Quick Info
j MetaTag

TypeSignature:
Arke.SharedSource.MetaTags.Tags.Custom.ItemID, Arke.SharedSource.MetaTags

e TypeSignature: The class name and assembly of the custom class.

The example above generates this tag:

<meta name=""ltemID" content=""{110D559F-DEA5-42EA-9C1C-
8ASDF7E70EF9}"" />

Defining tags in the InjectMetaTags pipeline

Tags are created in the InjectMetaTags pipeline by adding processors to the config. These processors are
added after the “checks” processors, and before the “flush” processor. Tags added in the pipeline are
added to all pages in the site.

Static tags can be added, where the name and value are statically defined in the processor definition.

Fully custom processors are created using a class that interits from
I InjectMetaTagsPipel ineProcessor. These custom processors can add one or more tags (or
none at all), based on your logic.

However, many runtime-generated tags can be added entirely in configuration, without coding (or that
leverage existing code):

e Method tags
e Property tags
e (Custom tags

<Arke.MetaTags. InjectMetaTags>
<-- These standard processors check to see if the pipeline
should proceed -->
<processor type="Arke...CheckContextltem, Arke.._MetaTags" />
<processor type="Arke...CheckHeader, Arke.._MetaTags' />

<-- A Static tag -->

<processor type="Arke...StaticTag, Arke..._.MetaTags'>
<TagName>copyright</TagName>
<TagValue>&copy; MySite.com</TagValue>
<TagType>nhame</TagType>

</processor>

<-- A Method tag -->

<processor type="Arke..._MethodTag, Arke..._MetaTags'>
<TypeSignature>Sitecore.Context, Sitecore.Kernel</TypeSignature>
<MethodName>GetSiteName</MethodName>
<TagName>sc_site</TagName>
<TagType>name</TagType>

</processor>

<-- A Property tag -->

<processor type="Arke...PropertyTag, Arke...MetaTags'>
<TypeSignature>Sitecore.Context, Sitecore.Kernel</TypeSignature>
<PropertyName>RequestID</PropertyName>
<TagName>RequestlID</TagName>
<TagType>name</TagType>

</processor>

<-- A Custom tag -->

<processor type="Arke...CustomTag, Arke..._MetaTags'>
<TypeSignature>Arke.._TemplateKey, Arke..._MetaTags</TypeSignature>

</processor>

<-- A custom processor -->
<processor type="Arke...SearchScopes, Arke.._MetaTags"™ />

<-- These processors gather the tags that are

Defined in the content editor -->
<processor type="Arke...GlobalTags, Arke.._MetaTags" />
<processor type="Arke...ltemTags, Arke.._MetaTags' />

<-- This processor flushes all the tags to the page -->
<processor type="Arke...FlushMetaTags, Arke.._MetaTags' />
</Arke .MetaTags. InjectMetaTags>

There are several types of processors available.

Defining a StaticMetaTag in the InjectMetaTags pipeline

Static tags are simply name/value pairs for common tags. These tags are created using a
Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.StaticTag pipeline
processor

<processor type="
Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.StaticTag,
Arke.SharedSource.MetaTags">
<TagName>copyr ight</TagName>
<TagValue>&copy; MySite.com</TagValue>
<TagType>hame</TagType>
</processor>

e TagName: The value for the “name” or “property” attribute (depending on the “Type” setting).

e TagValue: The value of the “content” attribute.

e TagType: Use “Name” for a meta tag that expresses the key as a “name” attribute, or “Property:
for a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:
<meta name="‘copyright' content="© MySite.com" />

To define a Static tag in the Content Editor, see Defining a StaticMetaTagq in the Content Editor.

Defining a PropertyMetaTag in the InjectMetaTags pipeline

Property tags have static names, but their value is derived at runtime from the value of any static
property, without coding. This might be a property in your solution, or a property in the Sitecore
namespace. These tags are created created using a

Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.PropertyTag pipeline
processor.

<processor type="
Arke.SharedSource.MetaTags-Pipelines. InjectMetaTags.PropertyTag,
Arke.SharedSource._MetaTags">
<TypeSignature>Sitecore.Context, Sitecore.Kernel</TypeSignature>
<PropertyName>RequestlID</PropertyName>
<TagName>RequestlID</TagName>
<TagType>name</TagType>
</processor>

o TypeSignature: The class name and assembly where the property is located.

e PropertyName: The property in that class that returns a string value to be used in the tag.

o Key: The value for the “name” or “property” attribute (depending on the “TagType”).

e Type: Use “Name” for a meta tag that expresses the key as a “name” attribute, or “Property: for
a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:

<meta name="RequestlID" content="{a5e26cf8-b33b-4b26-9f24-
8201c39ec7fa}''/>

To define a Property tag in the Content Editor, see Defining a PropertyMetaTagq in the Content Editor.

Defining a MethodMetaTag in the InjectMetaTags pipeline

Method tags have static names, but their value is derived at runtime from the value of any static
method, without coding. This might be a method in your solution, or a method in the Sitecore
namespace. These tags are created using a

Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.MethodTag pipeline
processor.

<processor type="
Arke.SharedSource._.MetaTags.Pipelines. InjectMetaTags.MethodTag,
Arke.SharedSource.MetaTags"'>
<TypeSignature>Sitecore.Context, Sitecore.Kernel</TypeSignature>
<MethodName>GetSiteName</MethodName>
<TagName>sc_site</TagName>
<TagType>hame</TagType>
</processor>

o TypeSignature: The class name and assembly where the property is located.

o MethodName: The method in that class that returns a string value to be used in the tag.

e Key: The value for the “name” or “property” attribute (depending on the “TagType”).

o Type: Use “Name” for a meta tag that expresses the key as a “name” attribute, or “Property: for
a meta tag that expresses the key as a “property” attribute.

The example above generates this tag:

e <meta name="'sc_site" content="website'/>

To define a Method tag in the Content Editor, see Defining a MethodMetaTag in the Content Editor.

Defining a CustomMetaTag in the InjectMetaTags pipeline

In a Custom tag, both the name and value are defined in custom code. This custom code is implemented
by creating a class that inherits from Arke . SharedSource .MetaTags . Tags.BaseTag. For
more information, see Coding Custom meta tags.

Custom tags are created using a
Arke.SharedSource.MetaTags.-Pipelines. InjectMetaTags.CustomTag pipeline
processor:

<processor type=""
Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.CustomTag,
Arke.SharedSource.MetaTags"'>
<TypeSignhature>
Arke.SharedSource.MetaTags.-Tags.-Custom.TemplateKey,
Arke.SharedSource.MetaTags
</TypeSighature>
</processor>

e TypeSignature: The class name and assembly of the custom class.
The example above generates this tag:
<meta name="TemplateKey" content="sample item"/>

To define a Custom tag in the Content Editor, see Defining a CustomMetaTagq in the InjectMetaTags
pipeline.

Defining a Custom Processor in the InjectMetaTags pipeline

While other tag types add exactly one tag, custom processors are “wide open” and can inject any
number of tags at runtime. Custom tags are implemented in code, and are wired to the InjectMetaTags
pipeline just like any other pipeline processor:

<processor
type="Arke.SharedSource._MetaTags-Pipelines. InjectMetaTags.SearchScopes,
Arke.SharedSource._MetaTags™ />

Custom processors can be defined in the InjectMetaTags pipeline, but not in the content editor.

For more information, see Coding InjectMetaTags pipeline processors.

Adding Tags

Adding tags in the InjectMetaTags pipeline
All tags defined on the InjectMetaTags pipeline are added to every page of the site. Tags are not added
to pages in the shell site.

Tags defined in the pipeline using the StaticTag, MethodTag or CustomTag processors each add exactly
one tag to the page. If the method or property returns null, no tag is added.

Custom processors can add zero or more tags (or none at all) based on your custom logic.

Adding global tags in the content editor
Tags defined in the GlobalTags folder of the MetaTag module are added to every page of the site.

= {J Modules
= J MetaTags
= .J OptionalTags
@ Robots NoFollow
@ Robots NoIndex
K J GlobalTags \
®, DeviceName
@ Image Toolbar
& InstanceName
@ ItemID
@ Machine Name
__ @ RobotsNOODP /
& {J Settings

No coding is required to emit these tags to the page. The pre-defined pipeline processor
Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags.GlobalTagsis
responsible for emitting these tags to the page.

Adding page-level tags in the content editor
Tags defined in the OptionalTags folder of the MetaTag module are not automatically added, but are
available to be added to any page by content authors.

= {J Modules
2 [7) MetaTags
= (J OptionalTags
@ Robots NoFollow
@ Robots NoIndex
= {J GlobalTags
@, DeviceName
@ Image Toolbar
& InstanceName
@ ItemID
@ Machine Name
@ Robots NOODP
@ (J settings

To allow content authors to include optional tags, you can modify any template to inherit from the
I'temMetaTags template. This will put a Meta Tags multilist field in the item.

Pt \ G

Y - Home
Welcome to Sitecore.
© quick Info
Q Meta Tags
Edit
Meta Tags:
@ Robots Nolndex

=] pata

The ItemMetaTags template
A base template called 1temMetaTags is included with the module. Any template can inherit from

this base template, allowing content authors to add optional tags to any page.

D Sample Item

0 Quick Info +
j Data =)

__Base template
= {J MetaTags ~ @ | Standard tem; ate Q
@ DynamicMetaTa(C JitemietaTags o
=] ItemMetaTags
@ StaticMetaTag
=] publishAnnotations

Once a template inherits from ItemMetaTags, no other coding is necessary to implement these tags.
The pre-defined pipeline processor

Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags. I temTags is responsible
for gathering and inserting these tags.

Adding page-level tags in code.

Coders may need to add meta tags to the page from some point in their code. The code for a layout,
sublayout or rendering may need to add a meta tag to the page, for example, for data needed by a
script, crawler, or metrics reporting.

See Adding meta tags from code using convenience methods.

Coding tags

Coding InjectMetaTags pipeline processors
The most flexible (and least convenient) way to add meta tags using this module is to create a custom
processor for the InjectMetaTags pipeline.

While other tag processors add exactly one tag, custom processors can add as many tags as they wish,
or none at all. For example, a processor might only add tags for based on specific templates, or the
position of the context item on the content tree, time of day, or any other criteria.

Custom processors inherit from I InjectMetaTagsPipel ineProcessor, and implement the
usual Process method.

The process method accepts an InjectMetaTagsPipel ineArgs argument, which provides access
to the MetaTags collection. Logic in the Process method can add any number of tags to this collection.
These can be StaticTags, MethodTags or PropertyTags but are typically StaticTags.

For this example, consider a solution that uses a Google Search Appliance for search services. The GSA
can be configured to gather information from meta tags when crawling, and later use this data to filter

search results. This solution uses a SearchScopes meta tag, which includes the GUID of every
ancestor of the current item. In this way, any item in the site could be used as a search scope; that is,
search results could be limited to that item or its descendents.

namespace Arke.SharedSource.MetaTags.Pipelines. InjectMetaTags

{

public class SearchScopes : llnjectMetaTagsPipelineProcessor

{

public void Process(InjectMetaTagsPipelineArgs args)
{
Sitecore.Diagnostics.Profiler.StartOperation(
"Adding SearchScopes tag.-"");
List<string> scopes = new List<string>();
try

{
scopes.Add(Sitecore.Context.ltem.ID.ToString());

Sitecore.Sites.SiteContext site = Sitecore.Context.Site;
string startPath = String.Empty;
if (site !'= null)
{
startPath = site.StartPath;

}

foreach (l1tem item in Sitecore.Context.ltem.Axes.GetAncestors())

{
if (item.Paths.FullPath.Length >= startPath.Length)
{

}

}
Tags.StaticTag tag = new Tags.StaticTag(

MetaTagType.name,
""'SearchScopes',
Sitecore.StringUtil.Join(scopes.ToArray(), " "));
args.-MetaTags.Add(tag);
}

catch (Exception ex)

{

Sitecore.Diagnostics.Tracer .Error(
""'SearchScopes MetaTag failed.', ex);

scopes.Add(item.ID.ToString());

inally

Profiler._EndOperation(scopes.-Count.ToString() + " scopes added.™);

e L

Coding Custom meta tags

To code a custom tag, create a class that interits from
Arke.SharedSource.MetaTags.Tags.BaseTag. These tags can be leveraged either in the
Content Editor, or in the InjectMetaTags pipeline.

Custom tags set three properties (defined in BaseTag) from the constructor:

e TagType: Use “Name” for a meta tag that expresses the key as a “name” attribute, or
“Property: for a meta tag that expresses the key as a “property” attribute.

o Key: The value for the “name” or “property” attribute (depending on the “TagType”).

e Value: The value of the “content” attribute.

For example, there is a pre-defined class for “I tem1D":

namespace Arke.SharedSource.MetaTags.Tags.Custom

{
public class ItemID : BaseTag

{
public ItemID()

{
TagType = MetaTagType.name;
Key = "ItemID";
Value = Sitecore.Context.Item.ID.ToString();

}
}
}

The example above generates this tag:

<meta name="ltemID" content=""{110D559F-DEA5-42EA-9C1C-
8A5DF7E70EF9}"/>

Adding meta tags from code using convenience methods

There times when it is necessary to add meta tags to the page from code, perhaps in a layout or
sublayout, or from a rendering, or from any other logic executing during the page lifecycle. To facilitate
this, the module includes a PageTags class that contains a convenience method called AddTag().

There are two flavors of the AddTag () method, to simplify adding tags from code:

e AddTag(MetaTagType TagType, string Key, string Value)
Use this method to add a static tag on the fly by supplying the necessary parameters.

e AddTag(BaseTag Tag)
Use this method to add a pre-built tag (either a StaticTag, a PropertyTagora
MethodTag).

Note that the module allows the same kind of tag to be added multiple times. It is legal for a page to
have multiple tags with the same key (name or property), so the module does not try to make sure you
only add “unique” tags.

The MetaTag control and Tag objects

At the end of the pipeline, the FlushMetaTags processor adds all of the tags accumulated in the AllTags
collection to the page. This is accomplished using a custom control called MetaTag. This control exposes
properties for TagType, Key and Value. The Render method assembles an html meta tag using
these properties.

The module includes objects for StaticTag, MethodTag and PropertyTag, all of which inherit
from BaseTag. These objects are used by pipeline processors to add tags to the MetaTags collection.
Each of these objects contains constructors to simplify the creation of the various types of tags. Each
also exposes a GetControl method, which returns a MetaTag control.

The InjectMetaTags Pipeline
The core of the module is the InjectMetaTags pipeline. This pipeline manages the gathering,
formation and injection of all tags that were created by the module’s other functions.

The first two processors ensure that there is an existing context item, and that the head section of the
page has a runat=server attribute. Without these, the pipeline aborts.

The final processor iterates over the context collection, creates renderings, and inserts them into the
head of the page.

The middle processors add tags to the current context, which are flushed to the page by the
FlushMetaTags processor. See Defining tags in the InjectMetaTags pipeline.

